Photothermal self-oscillation and laser cooling of graphene optomechanical systems.
نویسندگان
چکیده
By virtue of their low mass and stiffness, atomically thin mechanical resonators are attractive candidates for use in optomechanics. Here, we demonstrate photothermal back-action in a graphene mechanical resonator comprising one end of a Fabry-Perot cavity. As a demonstration of the utility of this effect, we show that a continuous wave laser can be used to cool a graphene vibrational mode or to power a graphene-based tunable frequency oscillator. Owing to graphene's high thermal conductivity and optical absorption, photothermal optomechanics is efficient in graphene and could ultimately enable laser cooling to the quantum ground state or applications such as photonic signal processing.
منابع مشابه
In vivo evaluation of the combination effect of near- infrared laser and PLGA polymer containing 5- fluorouracil – loaded Nano-graphene oxide
Introduction: Recently, nanographene oxide (NGO) is proven to be as a great candidate for drug delivery, and phototherapies cancer. Photothermal sensitivity of NGO and its optical absorption in the NIR region lead to photothermal ablation of tumors. Nevertheless, the major drawback of GO is its toxicity in biological systems, To overcome this problem, nanoscale GO prepare with...
متن کاملExamples of Quantum Dynamics in Optomechanical Systems
Optomechanical systems exploit the interaction between the optical radiation field and mechanical resonators in a laser-driven cavity. In the past few years, these systems have been the focus of considerable experimental and theoretical attention, yielding promising successes, particularly in using optomechanical cooling to reduce the thermal occupation of the resonators. This offers the prospe...
متن کاملOptomechanical photon shuttling between photonic cavities.
Mechanical motion of photonic devices driven by optical forces provides a profound means of coupling between optical fields. The current focus of these optomechanical effects has been on cavity optomechanics systems in which co-localized optical and mechanical modes interact strongly to enable wave mixing between photons and phonons, and backaction cooling of mechanical modes. Alternatively, ex...
متن کاملPhase Space Distribution Near the Self-Excited Oscillation Threshold
We study the phase space distribution of an optomechanical cavity near the threshold of self-excited oscillation. A fully on-fiber optomechanical cavity is fabricated by patterning a suspended metallic mirror on the tip of the fiber. Optically induced self-excited oscillation of the suspended mirror is observed above a threshold value of the injected laser power. A theoretical analysis based on...
متن کاملLow-Power Photothermal Self-Oscillation of Bimetallic Nanowires.
We investigate the nonlinear mechanics of a bimetallic, optically absorbing SiN-Nb nanowire in the presence of incident laser light and a reflecting Si mirror. Situated in a standing wave of optical intensity and subject to photothermal forces, the nanowire undergoes self-induced oscillations at low incident light thresholds of <1 μW due to engineered strong temperature-position (T-z) coupling....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 12 9 شماره
صفحات -
تاریخ انتشار 2012